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Abstract

This paper is concerned with the initial stage of a compressible liquid jet impact onto an elastic plate. The fluid flow is

governed by the linear wave equation, while the response of the plate is governed by the classical linear dynamical plate

equation. The coupling between the fluid flow and the plate deflection is taken into account through the dynamic and

kinematic conditions imposed on the wetted part of the plate. The problem is solved numerically by the normal mode

method. The principal coordinates of the hydrodynamic pressure and plate deflections satisfy a system of ordinary

differential and integral equations. A time stepping method based on the Runge–Kutta scheme is used for the numerical

integration of the system. Calculations are performed for two-dimensional, axisymmetric and three-dimensional jet

impacts onto an elastic plate. The effects of the impact conditions and the elastic properties of the plate on the

magnitudes of the elastic deflections and bending stresses are analysed.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of liquid impact onto an elastic panel is of importance in many engineering applications. Sloshing in a

liquefied natural gas (LNG) tank [see, for example, Bredmose et al. (2002)] can be very violent and the liquid cargo can

hit the tank walls and its ceiling with a strong force in the form of jet. In extreme cases, the wall or the ceiling can be

damaged and LNG leakage may occur. Another example is an offshore platform in rough seas where the interaction of

steep surface waves with the legs of the platform may lead to the development of a jet, which travels up the platform leg

with high speed and hits the lower deck of the platform from below. Such impacts may damage the lower surface of the

platform. Jet impact may also occur through slamming and ‘‘water-on-deck’’ phenomena when a ship is in a severe sea

environment. In the former case the ship bow emerges from the water and then plunges into the water at high speed

producing splashing jets as a result. In the latter case, water comes onto the ship and travels over the deck impacting

obstacles in its path. Other examples include steep waves or tsunami impact on offshore and coastal structures. There

are many cases where loss of life and damage has been caused by these kind of impact forces. Research into jet impact
e front matter r 2008 Elsevier Ltd. All rights reserved.
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onto elastic structures is therefore of great practical importance. An appropriate approach to this problem is a coupled

hydrodynamic and structural analysis.

Flexibility of the structure is very important in fluid–structure interaction. If the jet speed is very high, the structure

can be broken. For moderate impact velocities the structure can be damaged with the formation of cracks and change of

the structure shape. Low-speed jets may bring no immediate visible damage, but repeated impacts over time can lead to

fatigue damage of the structure surface.

For fatigue analysis we should estimate the value of the maximal stresses in the structure and identify the locations

where these maximal stresses occur. Estimates should be obtained in terms of the impact conditions, which include the

physical properties and geometrical characteristics of the structure, and the speed and shape of the jet.

This work considers the very early stage of jet impact on a flexible panel. Because of the rapid temporal variation,

acoustic effects will be important in the liquid. In other words, the compressibility of the liquid should be taken into

account within the time scale inversely proportional to the speed of the sound in the liquid. Through the integration of

the dynamic and kinematic conditions on the jet surface with respect to time, one can then adopt the approximation

that the free surface remains unchanged and the velocity remains zero on the undisturbed surface during this short

period.

The deformation of the panel is modelled by the linear dynamical plate equation. The coupling between the fluid flow

and deflection of the panel is achieved through the dynamic and kinematic conditions on the wetted surface of the

panel. There are two time scales in this coupled problem. The first one is related to the impact within which

compressible effects are important. The second one is related to deflection of the plate and can be measured by the first

natural period of plate oscillation. Strictly speaking, these two time scales should be comparable for the model to be

used. In reality, the second time scale is usually much larger than the first one. The time-marching based method in this

paper has been carried out well beyond the first period of the plate, or the second time scale, with the time step much

smaller than the first time scale. Even though the linear compressible model may not be fully applicable in the second

time scale, the simulations carried out could provide some insight into the acoustic effect on the solution of the coupled

problem. The high frequency modes of the plate have natural periods which may be comparable to the acoustic scale.

The present procedure is then fully consistent. Moreover, if the liquid is aerated in the impact region, then the sound

speed in the air/liquid mixture could be as low as 20m/s (Wu, 1991) and the acoustic time scale could be comparable to

the first natural period of plate oscillation.

Strictly speaking, if the interest in impact is over a longer period, or when the simulation has to be carried out beyond

the first time scale, the free surface deformation and potential variation along the free surface with time have to be taken

into account. Lu et al. (2000) considered the water entry problem of an elastic wedge. They used an incompressible

model and imposed fully nonlinear boundary conditions on the instantaneous position of the free surface. However, the

present work focuses on the initial stage and the compressibility effect.

The present problem is dynamically equivalent to that of a plate moving suddenly into a stationary jet. This

corresponds to an infinitely large initial acceleration. The acoustic effect will be much less pronounced if the plate moves

into the jet with a finite acceleration. This case was investigated by King and Needham (1994) for a rigid vertical plate.

They considered the initial stage of the flow and focused on an inner solution close to the intersection point between the

plate and the free surface. The analysis provided the shape of the jet and its length in the leading order as time tends to

zero. The free-surface deformation and the flow field caused by the impulsive horizontal motion of a rigid vertical plate

into a horizontal strip of inviscid incompressible fluid, initially at rest, was studied by Needham et al. (2007) in the small

time limit using the method of matched asymptotic expansions. The second-order velocity potential has been obtained

in the ‘‘outer’’ region, the dimension of which is of the order of the liquid depth. This solution is singular at the point

where the free surface meets the rigid wall. In polar coordinates ðr; yÞ with the center at the intersection point, the first-

order velocity potential is of the order of Oðr log rÞ and the second-order potential of the order of Oðlog2 rÞ as r! 0.

Needham et al. (2007) derived and studied the inner solution with the aim of resolving these singularities. Note that

within the linear theory both the velocity potential and the hydrodynamic pressure tend to zero as r! 0 but their first

derivatives with respect to the radial coordinate are singular at the intersection point. The present paper is concerned

with the global effect of a jet impact on the deflection and stress of the plate within the linear theory.

The present analysis is similar to the work of Korobkin (1996), who treated the plate as rigid. He used the

eigenfunctions for the jet cross-section and reduced the problem to a set of differential equations along the jet. The

extension of this analysis to a flexible plate is not trivial. While the eigenfunctions for the fluid flow correspond to the

shape of the jet cross-section, the eigenfunctions for the structural analysis correspond to the plate shape. These two sets

of eigenfunctions are not orthogonal to each other. As a result, far more eigenfunctions are needed and the memory

effect term involves far more complex integrands than in the case of jet impact onto a rigid plate.

In problems of hydroelasticity, the plate deflection and distribution of stresses in the plate are of primary importance

for practical needs. However, the hydrodynamic loads and pressure distributions are still needed by designers. For this
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reason, even though the deflection and stress in the plate can be obtained without direct calculations of the pressure, the

results for pressure distributions are still provided.

In Section 2 the mathematical formulation of the coupled problem of impact and scaling is given. In Section 3 the

hydrodynamic problem is analysed with the help of a modal approach and integral transforms. Section 4 contains a

structural analysis of the problem by the normal mode method. The numerical procedure for solving the coupled

problem is described in Section 5. Numerical results for two-dimensional jet impact onto a beam, three-dimensional jet

impact onto rectangular and circular plates are presented in Sections 6, 7 and 8, respectively. The effects of impact

conditions on the elastic response of the plate are analysed in each of these three sections. The main results of the study

are outlined in Section 9.
2. Formulation of the problem

We consider a coupled problem of jet-structure impact. The structure is a single plate of uniform thickness. Its edges

are simply supported or clamped. The jet hits the plate from below in the normal direction. Gravity and surface tension

effects are neglected. The presence of air and, in particular, the air-cushion effect are not taken into account. The liquid

is assumed ideal and weakly compressible. The front part of the jet is flat (see Fig. 1). Perturbations of the jet flow due to

the impact are described within the acoustic approximation (Korobkin, 1996). This approach is applicable if the jet

speed V is much smaller than the sound speed in the liquid c0, that is, for low Mach number M ¼ V=c0. Experiments

[see Eroshin et al. (1980)] indicate that the linear acoustic approximation can be used for analysis of water impact in the

range of impact speeds 5m=soVo100m=s.
We consider the initial stage of the impact, when the flow characteristics change rapidly with time. This stage, which

is referred to below as the impact stage, is of short duration. This makes it possible to neglect deformations of the jet

free surface, linearize the boundary conditions and impose them on the initial surface of the jet.

The problem is considered in nondimensional variables, where the characteristic dimension R of the jet cross-section

D is the length scale, jet speed V is the velocity scale, the ‘‘water hammer’’ pressure rc0V is the pressure scale, r is the

liquid density, the product VR is the scale of the velocity potential of the flow in the jet region ðx; yÞ 2 D, zo0 and

RV=c0 is the plate deflection scale, Oxyz is the Cartesian coordinate system with the plate being in the plane z ¼ 0 (see

Fig. 1). The ratio R=c0 is taken as the time scale.

In the nondimensional variables the liquid flow after the impact instant, t ¼ 0, is described by the total velocity

potential z� jðx; y; z; tÞ, where j is the disturbed potential which satisfies the following equations and boundary

conditions:

jtt ¼ Dj ððx; yÞ 2 D; zo0Þ, (1)

j ¼ 0 ððx; yÞ 2 qD; zo0Þ; j! 0 ððx; yÞ 2 D; z!�1Þ, (2)

jz ¼ 1� wtðx; y; tÞ ððx; yÞ 2 D; z ¼ 0Þ, (3)
Fig. 1. Sketch of the jet–plate impact problem.
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j ¼ jt ¼ 0 ðt ¼ 0Þ, (4)

p ¼ jt, (5)

where D is the Laplace operator, wðx; y; tÞ is the plate deflection, pðx; y; z; tÞ is the hydrodynamic pressure and qD is the

boundary of the jet cross-section D. In the case of a rigid plate, w ¼ 0; this problem was studied by Korobkin (1996).

The plate deflection is governed by the equation

awtt þ bD2w ¼ pðx; y; 0; tÞ ððx; yÞ 2 S; t40Þ, (6)

w ¼ wt ¼ 0 ðt ¼ 0Þ, (7)

where

a ¼
m

rR
; b ¼

Dp

rc20R3
,

m ¼ rph is the plate mass per unit area, rp is the density of the plate material and h is the plate thickness, Dp ¼

Eh3=½12ð1� n2Þ� is the plate stiffness, E is Young’s modulus, n is the Poisson ratio and S is the surface area of the plate.

Boundary conditions for Eq. (6) are not specified at this stage and will be given for each specific problem. It can be

seen that the problems under consideration (1)–(5) and (6)–(7) are coupled. The liquid flow and the plate deflection have

to be determined simultaneously, which is a feature of hydroelasticity problems.

The coupled problem (1)–(7) is solved by the normal mode method, which is applied to both the hydrodynamic

problem (1)–(5) and the structural problem (6)–(7). The method is designed in such a way that it can deal with a jet of an

arbitrary cross-section and elastic plate of an arbitrary shape.
3. Hydrodynamic analysis

The velocity potential jðx; y; z; tÞ is sought in the form

jðx; y; z; tÞ ¼
X1
k¼1

Mkðt; zÞAkðx; yÞ, (8)

where Akðx; yÞ are eigenfunctions satisfying equations

q2Ak

qx2
þ

q2Ak

qy2
þ l2kAk ¼ 0 ððx; yÞ 2 DÞ, (9)

Ak ¼ 0 ððx; yÞ 2 qDÞ

and the orthogonality conditionZ
D

Akðx; yÞAnðx; yÞdxdy ¼ dn;k, (10)

where lk are the eigenvalues, dn;k ¼ 0 for nak and dn;n ¼ 1.

From Eqs. (1)–(4) it follows that the unknown functions Mkðt; zÞ should satisfy the equation

q2Mk

qt2
¼

q2Mk

qz2
� l2kMk ðzo0; t40Þ, (11)

the initial conditions

Mk ¼
qMk

qt
¼ 0 ðzo0; t ¼ 0Þ, (12)

the boundary condition

qMk

qz
ðt; 0Þ ¼ ck �

d

dt
UkðtÞ, (13)

ck ¼

Z
D

Akðx; yÞdxdy; UkðtÞ ¼

Z
D

wðx; y; tÞAkðx; yÞdxdy (14)
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and the far-field condition

Mkðt; zÞ ! 0 ðz!�1Þ. (15)

Once the functions Mkðt; zÞ have been evaluated, the pressure in the impact region, ðx; yÞ 2 D; z ¼ 0, can be obtained as

pðx; y; 0; tÞ ¼
X1
k¼1

qMk

qt
ðt; 0ÞAkðx; yÞ. (16)

We apply the Laplace transform to Eqs. (11)–(15). This gives

ðs2 þ l2kÞM
L
k ¼

q2ML
k

qz2
ðzo0Þ,

qML
k

qz
¼

ck

s
� sUL

k ðz ¼ 0Þ,

ML
k ! 0 ðz!�1Þ, (17)

where superscript L indicates Laplace transform. From the solution of ML
k ðs; zÞ we obtain

qMk

qt

� �L

ðs; 0Þ ¼ sML
k ¼

ckffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ l2k

q � s2
UL

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ l2k

q . (18)

The inverse Laplace transform then leads to

qMk

qt
ðt; 0Þ ¼ ckJ0ðlktÞ �

d2

dt2

Z t

0

UkðtÞJ0½lkðt� tÞ�dt. (19)

Here J0ðxÞ is the Bessel function of zero order. From Eqs. (16) and (19) the pressure distribution in the contact region

can be found as

pðx; y; 0; tÞ ¼
X1
k¼1

ckAkðx; yÞJ0ðlktÞ �
q2

qt2

X1
k¼1

Akðx; yÞ

Z t

0

UkðtÞJ0½lkðt� tÞ�dt. (20)

The first term on the right-hand side of Eq. (20) is the pressure caused by compressible jet impact onto a rigid plate and

the second term corresponds to the convolution effect of the plate flexibility, or the ‘‘memory effect’’.

For a rigid plate and incompressible liquid the tangential velocity at the intersection point is found to be singular

(Peregrine, 1972). The nature of this singularity within the framework of a flexible plate and compressible liquid is not

pursued here, as the dynamic coupling between the plate and the liquid is through the pressure. The pressure at the

intersection can be discontinuous for a rigid plate and incompressible liquid (Wu, 2001). Whether this discontinuity

remains in the present problem becomes less obvious, as shown in Eq. (20). In any case, the possible discontinuity will

not affect the global results of deflection and stress, as it occurs only at the intersection points. This can be confirmed in

the numerical simulation through using more terms in the expansion in the convergence study.
4. Structural analysis

The structural part of the problem is solved with the help of the normal mode method. This method was successfully

used in the two-dimensional problem of beam-liquid impact (Korobkin, 1998; Korobkin and Khabakhpasheva, 2006).

The plate deflection is sought in the form

wðx; y; tÞ ¼
X1
m¼1

amðtÞcmðx; yÞ, (21)

where the functions cmðx; yÞ are non-trivial solutions of the homogeneous problem

D2cm ¼ k4mcm ððx; yÞ 2 SÞ (22)

and km are the corresponding eigenvalues. Appropriate boundary conditions are imposed on qS, which are the same as

for the plate under consideration. The eigenfunctions cmðx; yÞ satisfy the orthogonality conditionZ
S

cmðx; yÞcnðx; yÞdxdy ¼ dm;n. (23)
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By substituting Eq. (21) into Eq. (6), multiplying the result by cnðx; yÞ and integrating over the plate area S, we arrive

at the equations with respect to the principal coordinates anðtÞ:

a €an þ bk4nan ¼

Z
D

pðx; y; 0; tÞcnðx; yÞdxdy. (24)

Note that in this equation the integral is over the contact region D but not over the plate area S since p � 0 outside of

the contact region.

Eq. (21) makes it possible to write the functions UkðtÞ from Eq. (14) as

UkðtÞ ¼
X1
m¼1

amðtÞTkm,

where

Tkm ¼

Z
D

Akðx; yÞcmðx; yÞdxdy. (25)

Using Eq. (20) we obtainZ
D

pðx; y; 0; tÞcnðx; yÞdxdy ¼
X1
k¼1

ckTknJ0ðlktÞ �
d2

dt2

X1
k¼1

Tkn

Z t

0

UkðtÞJ0½lkðt� tÞ�dt. (26)

Eqs. (24) and (26) are combined to give

q2

qt2
aan þ

X1
k¼1

Tkn

Z t

0

UkðtÞJ0½lkðt� tÞ�dt

( )
þ bk4nan ¼ qnðtÞ,

where

qnðtÞ ¼
X1
k¼1

ckTknJ0ðlktÞ, (27)

X1
k¼1

Tkn

Z t

0

UkðtÞJ0½lkðt� tÞ�dt ¼
X1
m¼1

Z t

0

amðtÞ
X1
k¼1

TknTkmJ0½lkðt� tÞ�

( )
dt.

It is convenient to introduce the functions

KnmðtÞ ¼
X1
k¼1

TknTkmJ0ðlktÞ; KnmðtÞ ¼ KmnðtÞ (28)

and the new unknown functions bnðtÞ and rnðtÞ

bnðtÞ ¼ aan þ
X1
m¼1

Z t

0

amðtÞKnmðt� tÞdt,

dbn

dt
¼ rnðtÞ.

With these definitions, the plate equation is reduced to

drn

dt
¼ qn � bk4nan.

Finally, we obtain a system of ordinary differential equations in vector form

d~b

dt
¼~r, (29)

d~r

dt
¼ ~q� bD~a (30)
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and a system of integral equations

a~aðtÞ þ
Z t

0

Kðt� tÞ~aðtÞdt ¼ ~bðtÞ, (31)

subject to the initial conditions

~bð0Þ ¼ 0; ~að0Þ ¼ 0; ~rð0Þ ¼ 0, (32)

where

~qðtÞ ¼ ½q1ðtÞ; q2ðtÞ; . . . �
T; ~bðtÞ ¼ ½b1ðtÞ; b2ðtÞ; . . . �

T,

~aðtÞ ¼ ½a1ðtÞ; a2ðtÞ; . . . �
T; ~rðtÞ ¼ ½r1ðtÞ; r2ðtÞ; . . . �

T,

KðtÞ is symmetric matrix with elements KnmðtÞ and D ¼ diagfk41; k
4
2; . . .g is a diagonal matrix.
5. Numerical procedure

To solve the jet impact problem numerically, we first determine the eigenfunctions Akðx; yÞ, cmðx; yÞ from Eqs. (9)

and (22), and the corresponding eigenvalues lk and km for kpNj ;mpNp. These functions are arranged in such a way

that lkþ1Xlk and kmþ1Xkm. Then we evaluate the quantities ck, Tkm by Eqs. (14) and (25) and the functions qnðtÞ,

KnmðtÞ, by Eqs. (27) and (28), where npNp, mpn and tX0.

The integral in Eq. (31) is subdivided into two integrals along the intervals ½0; t� 1
2
Dt� and ½t� 1

2
Dt; t�. The first

integral is evaluated by the trapezoidal rule with the integration step equal to 1
2
Dt. The integral over the interval

½t� 1
2
D; t� is computed by using quadratic approximation of the integrand on the interval ½t� Dt; t�:

a~aðtÞ þ
5Dt

24
Kð0Þ~aðtÞ ¼ ~bðtÞ �

Z t�Dt=2

0

Kðt� tÞ~aðtÞdtþ
Dt

24
KðDtÞ~aðt� DtÞ �

Dt

3
K

1

2
Dt

� �
~a t�

1

2
Dt

� �
. (33)

The time step Dt is chosen in such a way that the functions qnðtÞ and KnmðtÞ for each interval ðjDt; ðj þ 1ÞDtÞ are

accurately represented with the help of linear interpolation. The system of differential equations (29) and 30 is solved

numerically by the fourth-order Runge–Kutta method. The values of ~aððDt=2ÞjÞ, jX1, are calculated by using Eq. (33),

where the forcing term ~bððDt=2ÞjÞ comes from the solution of Eqs. (29) and (30). The integration of Eqs. (29)–(31) is

performed with different steps Dt until convergence has been achieved.

Once the principal coordinates anðtÞ have been obtained, one can evaluate the plate deflection and internal stresses.

The pressure distribution over the contact region is computed with the help of the formula

pðx; y; 0; tÞ ¼
X1
k¼1

pkðtÞAkðx; yÞ, (34)

where

pkðtÞ ¼ ckJ0ðlktÞ �
X1
m¼1

Tkm _amðtÞ þ l2k

Z t

0

amðtÞPkðt� tÞdt
� �

, (35)

PkðtÞ ¼
J1ðlktÞ

lkt
� J0ðlktÞ. (36)

Here J1ðxÞ is the Bessel function of first order. For all calculations performed in this paper, a steel plate is chosen with

E ¼ 21� 1010 N=m2, rp ¼ 7875kg=m3, n ¼ 0:3. The water jet parameters are c0 ¼ 1500m=s, r ¼ 1000kg=m3. In what

follows, all dimensional quantities are indicated with a tilde.
6. Two-dimensional problem of jet impact

A sketch of a two-dimensional jet impact problem is shown in Fig. 2. The jet width ~aj is taken as the length scale R of

the problem. In dimensionless variables, ap is the plate length and c is the distance of the jet centre from the left end of

the plate. The plate is modelled as a simply supported beam of constant thickness ~h. The hydrodynamic part of the
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original problem Eqs. (1)–(7) provides

jtt ¼ jxx þ jzz ðc�
1
2
oxocþ 1

2
; zo0Þ,

j ¼ 0 ðx ¼ c� 1
2
; zo0Þ,

jz ¼ 1� wtðx; tÞ ðc� 1
2
oxocþ 1

2
; z ¼ 0Þ.

Eqs. (9) for the eigenfunctions of the jet cross-section take the forms

q2Ak

qx2
þ l2kAk ¼ 0 ðc� 1

2
oxocþ 1

2
Þ,

Ak ¼ 0 ðx ¼ c� 1
2
Þ.

Non-trivial solutions of this homogeneous problem are

AkðxÞ ¼
ffiffiffi
2
p

sin½lkðx� ðc�
1
2
ÞÞ�; lk ¼ pk ðkX1Þ.

Eq. (14) provides

ck ¼

ffiffiffi
2
p

pk
ð1� ð�1ÞkÞ.

In the two-dimensional problem, the plate region S corresponds to the interval ð0; apÞ and Eq. (22) takes the form

d4cm

dx4
¼ k4mcm ð0oxoapÞ.

For a simply supported beam the boundary conditions are

cm ¼ 0;
d2cm

dx2
¼ 0 ðx ¼ 0 or x ¼ apÞ.

We find

cmðxÞ ¼

ffiffiffiffiffi
2

ap

s
sinðkmxÞ; km ¼

pm

ap

ðmX1Þ.

Eq. (25) gives

Tkm ¼

Z cþ1=2

c�1=2
AkðxÞcmðxÞdx ¼

ffiffiffiffiffi
1

ap

s
sin½a�ð1Þ�
a�ð1Þ

cos½a�ð2cÞ� �
sin½aþð1Þ�
aþð1Þ

cos½aþð2cÞ�

� �
,

where

a�ðxÞ ¼
p
2

k � x
m

ap

� �
; aþðxÞ ¼

p
2

k þ x
m

ap

� �
.

In the numerical calculations the plate length ~ap varies from 50 cm to 4m, the plate thickness ~h from 0.5 to 5 cm and

the jet width ~aj from 10 cm to 1m. The calculations are performed in the nondimensional variables. The number of

modes Np for the plate deflection and Nj for the jet vary from 3 to 50. Numerical tests revealed that at least 10 modes

must be used both for the structural and for hydrodynamic analysis. The time step Dt is in the range from 0.001 to 0.05.

If the number of modes Np or Nj increase, the time step must be reduced.

Results, depicted in Figs. 3–8 are obtained for the plate length ~ap ¼ 1m, the plate thickness ~h ¼ 2 cm and the jet

width ~aj ¼ 20 cm. The distance from the left end of the plate to the jet centre is ~c ¼ 25 cm. In nondimensional variables

ap ¼ 5 and c ¼ 1:25: The impact velocity is 25m=s. Hydrodynamic pressure and plate deflection are linearly dependent
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on the impact velocity. The number of modes are equal to 20 for the structural analysis (Np) and 10 for the

hydrodynamic analysis ðNjÞ. The dimensionless time step is chosen as Dt ¼ 0:05, which corresponds to 6:7� 10�6 s in

the dimensional variables.

Fig. 3 presents the evolution of the plate deflection (the unit of time is the microsecond). It can be seen that plate

vibrates owing to the impact. The position of the maximal deflection moves along the plate during the impact. This

implies that the contributions of the higher modes are important. A simplified approach with Np ¼ 1 is not expected to

give appropriate estimates of maximal stresses caused by the jet impact.

Fig. 4 presents the time history of the plate deflections at the plate centre and at the jet centre, maximal and minimal

deflections along the plate. It is important to note that the periods of free vibrations of the plate are given by the

formulae [see Timoshenko (1955)]

T ðf Þn ¼
2p
on

; on ¼
p2n2

~a2p

ffiffiffiffiffiffiffi
Dp

rp
~h

s
.

Fig. 4. Evolution of the plate deflections at the plate centre (solid line) and at the jet centre (chain-dotted line), maximal (dashed line)

and minimal (dotted line) deflections along the plate at each time instant.

Fig. 5. Evolution of the strain distribution along the plate (time t is in microseconds).
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For a steel plate with ~ap ¼ 1m and ~h ¼ 2 cm we obtain T
ðf Þ
1 ¼ 20:4ms, T

ðf Þ
2 ¼ 5:1ms and T

ðf Þ
3 ¼ 2:26ms. The plate

deflections in Fig. 4 are not entirely periodic, which is due to the memory effect. As a rough estimate of the main period

T ðvÞ of the plate vibration due to the impact, we use the time between the two zero points of the curves, which gives

T ðvÞ � 22ms. This is longer than the first mode period T
ðf Þ
1 of free plate vibration, which is due to the added mass effect.

Evolution of the strain distribution along the plate is presented in Fig. 5 for t ¼ 2, 4, 7 and 11ms. These curves exhibit

stronger oscillations than the deflection curves (see Figs. 3 and 4). At each time instant the strain distribution is smooth

but the strain maximum changes very fast in time (see Fig. 6).

Figs. 7 and 8 present the evolution of the pressure at the jet centre (Fig. 7) and pressure distribution along the contact

region (Fig. 8) in dimensionless variables. The thick line in Fig. 7 corresponds to Nj ¼ Np ¼ 30 modes and the thin line

corresponds to Nj ¼ Np ¼ 10 modes. It can be seen that these two lines are in a fairly good agreement. Moreover,

calculations were performed with Nj ¼ Np ¼ 50 modes and the result was found to be very close to that for Nj ¼

Np ¼ 30 modes.
Fig. 6. Time history of maximal strain in the plate.

Fig. 7. Pressure at the centre of the jet in nondimensional form, calculated with different numbers of modes.
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Fig. 7 demonstrates that the acoustic effects are most important during the very initial stage, duration of which can

be roughly estimated as R=c0 and in the nondimensional variables as to1. Rapid temporal evolution of the pressure can

be observed during this stage. The pressure decreases thereafter and oscillates around zero. This behaviour can be partly

explained by the pressure wave propagated from the jet surface into the contact region [see Korobkin (1996) for details].

At each time instant the pressure distribution along the plate is smooth (see Fig. 8). Numerical simulations showed that

the way the pressure distribution evolves in time does not strongly depend on the location of the impact.
Fig. 8. Evolution of the pressure distribution along the jet cross-section in nondimensional form.

Fig. 9. Plate deflections at the plate centre in the case of symmetrical impact (~c ¼ 2m, x ¼ 2m, solid line). Dotted line is for centre of

the plate ðx ¼ 2mÞ and dashed line is for the centre of the jet ðx ¼ 1mÞ in the case of asymmetrical impact ð~c ¼ 1mÞ.
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Calculations were performed also for the same plate but for jet impact at the plate centre ð~c ¼ 0:5mÞ. In this case the

main period of the plate vibration T ðvÞ is about 22:6ms. The maximal deflection wmax ¼ 1:06 cm and maximal strain

�max ¼ 8717ms occur at tmax ¼ 5:33ms at the plate centre. Both stresses and deflections for the centre impact problem

are higher than those during off-centre impact (for the given impact conditions).

Results depicted in Fig. 9 are obtained for the plate length ~ap ¼ 4m, plate thickness ~h ¼ 5 cm, jet width ~aj ¼ 1m and

impact velocity V ¼ 25m=s. The number of modes are Np ¼ 20 for the plate and Nj ¼ 10 for the jet. The dimensionless

time step is Dt ¼ 0:01, which corresponds to 6:7� 10�6 s. Two cases are considered: centre impact with ~c ¼ 2m and off-

centre impact with ~c ¼ 1m. In the first case we found that the maximal deflection occurs at the centre of the plate, which

is shown by the solid line in the figure. In the case of off-centre impact the maximal deflection occurs away from both

the centre of the plate or the jet centre. The maximum of the plate deflection is equal to 12:9 cm, which occurs at

tmax ¼ 28ms. The maximal deflection at the centre, on the other hand, is equal to 12:5 cm at tmax ¼ 27:2ms. In both

cases T ðvÞ � 145ms, while the free vibration period T
ðf Þ
1 ¼ 130ms. We may conclude that location of the jet impact has

little effect on the period of the plate vibration during compressible jet impact onto an elastic plate.

Comparing the bending stresses obtained in the problems of centre and off-centre impacts, we find that in the off-

centre impact problem the stresses are higher than in the problem of centre impact, despite the fact that the maximal

deflection is smaller in the off-centre impact case.

In the centre impact case, the maximal strain of �max ¼ 8157ms occurs at the centre of the plate at tmax ¼ 34:5ms,

while in the off-centre impact case �max ¼ 12 417ms occurs near the plate centre, xmax ¼ 2:3m, and much earlier:

tmax ¼ 27ms. This observation indicates that the contribution of the higher elastic modes is much more pronounced in

the off-centre impact case.
7. Three-dimensional problem of jet impact onto a rectangular plate

Impact of a compressible jet with a rectangular cross-section onto an elastic rectangular plate is considered. A sketch

of this impact problem is depicted in Fig. 10. The impact region is shown in the shaded area. The width of the jet cross-

section in the x-direction is taken as the length scale R. Then ap and bp are the nondimensional width and length of the

plate respectively, bj is the length of the jet cross-section in the y-direction and ðxc; ycÞ are the coordinates of the jet

centre. The jet cross-section D corresponds to the rectangular region ðxc �
1
2
; xc þ

1
2
Þ � ðyc � bj=2; yc þ bj=2Þ.

Eqs. (1)–(5) for the hydrodynamic part of the impact problem retain their forms. The eigenfunctions Anlðx; yÞ and the

eigenvalues lnl are

Anl ¼
2ffiffiffiffi
bj

p sin lðnÞx x� xc �
1

2

� �� �� �
sin lðlÞy y� yc �

bj

2

� �� �� �
,

lðnÞx ¼ pn; lðlÞy ¼
pl

bj

,

lnl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlðnÞx Þ

2
þ ðlðlÞy Þ

2
q

¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ l2=b2j

q
. (37)
Fig. 10. Sketch of the three-dimensional impact problem.
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Eq. (14) gives

cnl ¼
2
ffiffiffiffi
bj

p
p2nl
½1� ð�1Þn�½1� ð�1Þl �.

For the rectangular elastic plate S ¼ ð0; apÞ � ð0; bpÞ Eq. (22) can be written as

D2cpq ¼ k4pqcpq ððx; yÞ 2 SÞ.

The boundary conditions for a simply supported plate are

cpq ¼ 0; Dcpq ¼ 0 ððx; yÞ 2 qSÞ.

The eigenfunctions cpqðx; yÞ are

cpqðx; yÞ ¼
2ffiffiffiffiffiffiffiffiffi
apbp

p sin½kðpÞx x� sin½kðqÞy y�,

kðpÞx ¼
pp

ap

; kðqÞy ¼
pq

bp

; kpq ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=a2p þ q2=b2p

q
.

The integrals in Eq. (25) are calculated analytically. We find

Tnl;pq ¼

Z xcþ1=2

xc�1=2

Z ycþbj=2

yc�bj=2
Anlðx; yÞcpqðx; yÞdxdy ¼

ffiffiffiffiffiffiffiffiffi
bj

apbp

s
sin½a�ð1Þ�
a�ð1Þ

cos½a�ð2xcÞ� �
sin½aþð1Þ�
aþð1Þ

cos½aþð2xcÞ�

� �

�
sin½b�ðbjÞ�

b�ðbjÞ
cos½b�ð2ycÞ� �

sin½bþðbjÞ�

bþðbjÞ
cos½bþð2ycÞ�

� �
,

where

a�ðxÞ ¼
p
2

n� p
x

ap

� �
; aþðxÞ ¼

p
2

nþ p
x

ap

� �
,

b�ðxÞ ¼
p
2

l � q
x

bp

� �
; bþðxÞ ¼

p
2

l þ q
x

bp

� �
.

The periods of free vibration of the rectangular plate are given by the formulae [see Timoshenko (1955)]

T ðf Þp;q ¼
2p
k2pq

ffiffiffiffiffiffiffi
rph

Dp

s
.

Fig. 11. Time history of the deflection at the plate centre.
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The three-dimensional jet impact problem is solved numerically using the same procedure as that described in

Section 5 for the two-dimensional impact problem. In order to do this, the eigenvalues lnl , kpq and the corresponding

eigenfunctions are arranged in a special way. We evaluate the eigenvalues lnl of the jet cross-section by Eq. (37) and

arrange them with index k ¼ kðn; lÞ, k ¼ 1; 2; 3 . . . in such a way that if k1ok2, then lk1
plk2

. This means that the

eigenfunctions with smaller eigenvalues enter the analysis before the eigenfunctions with higher eigenvalues. The same

procedure is applied to the eigenvalues of plate vibration km, where m ¼ mðp; qÞ. We get km1
pkm2

, if m1om2. It should

be noted that the orthogonality conditions given by Eqs. (10) and (23) and all other formulae in Sections 3 and 4 are

valid with k ¼ kðn; lÞ and m ¼ mðp; qÞ.
Results depicted in Figs. 9–11 are obtained for a steel plate. The dimensions of the plate are 1m� 1m, the plate

thickness is 2 cm, the jet cross-section is 20 cm� 20 cm and the centre of the jet coincides with the centre of the plate.

The impact velocity is V ¼ 25m=s. The dimensionless time step is Dt ¼ 0:04, which corresponds to 5:3� 10�6 s.

Calculations were performed with 100 modes for the plate and 100 modes for the jet, which was found to be sufficient to

provide converged results [see Korobkin et al. (2006)].

Fig. 11 presents the deflection at the centre of the plate as a function of time. As in the case of a two-dimensional

impact problem, the plate deflection in Fig. 11 is not entirely periodic, which is due to the memory effect.

Rough estimation of the main period T ðvÞ of the plate vibration due to the impact gives T ðvÞ � 11:4ms, while
Fig. 12. Evolution of the deflection over the plate 1m� 1m� 2 cm, centre-impact problem.
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T
ðf Þ
1;1 � 10:2ms for free vibration of this steel plate. The dots on the line correspond to the time instants in Fig. 12 when

the distributions of the plate deflections are shown.

Fig. 12 presents the evolution of the plate deflection through several snapshots. At the early stage of the impact,

t ¼ 0:27ms, the maximal deflection occurs at the centre of the plate. Graphically, the plate deflection appears to be

somewhat axisymmetric, despite the rectangular shapes of both the plate and the jet cross-section. Within the jet,

the deflection is positive (the plate is deflected in the direction of the jet flow) but outside the jet it is negative (towards

the jet). At t ¼ 0:8ms most of the plate deflection is positive apart from near the plate corners. At t ¼ 1:3ms the

calculations show that the plate deflection reaches its maxima near the corners. At the point ð0:24; 0:24mÞ and three

corresponding points near the other corners the deflection is equal to 0:94mm, while at the plate centre the deflection is

0:64mm. Contribution from the mode p ¼ 3 and q ¼ 3 is clearly visible. At t ¼ 2:6ms, which is about a quarter of the

period T ðvÞ, the deflections are positive everywhere and reach their absolute maximum at the plate centre.

Fig. 13 shows the distributions of the bending moments per unit distance Mxx and Mxy over the plate, which are

calculated by using the formulae

Mxx ¼ �Dp
q2w

qx2
þ n

q2w

qy2

� �
; Mxy ¼ �Dpð1� nÞ

q2w

qx qy
.

It can be seen that these distributions are highly oscillatory. The values of Mxx are about three times higher than those

of Mxy. This ratio was found to be approximately constant during the calculations.

Figs. 14 and 15 show the results of calculations for off-centre impact on a steel plate of 1m� 2m. The plate thickness

is 2 cm and the jet cross-section is 20 cm� 20 cm. The centre of the jet is located at ð30; 40 cmÞ. Calculations are

performed for the impact velocity V ¼ 25m=s with nondimensional time step Dt ¼ 0:05 which corresponds to

6:7� 10�6 s. The number of modes is Np ¼ 100 for the plate and Nj ¼ 100 for the jet.

Fig. 14 shows the plate deflection at several time instants. It was observed that the deflection maximum occurs at

t ¼ 7ms and is located outside of the impact region. Fig. 15(a) shows the time history of the deflection at the plate and

jet centres, and Figs. 15(b) and (c) provide the time histories of Mxx and Mxy, respectively, at the same locations. The

higher frequency modes are more important for the bending moments than for the deflection. The maximal value of

Mxx estimated by using the two curves in Fig. 15(b) is around 15 782N and occurs at t � 0:13ms. After this peak, the

value of Mxx is always below 8000N. The maximal value of Mxy on the other hand is less than 2000N.

It is also interesting to note that the maximal values of w, Mxx and Mxy do not occur at the same location. For

example, at t ¼ 7ms (see Fig. 14) the maximal deflection w ¼ 1:6mm occurs at the point ð0:34; 1:64mÞ, the maximal

bending moment Mxx ¼ 16 374N at ð0:32; 1:68mÞ and the maximal bending moment Mxy ¼ 4256N at the point

ð0:18; 1:8mÞ. The absolute maxima of the quantities w, Mxx and Mxy do not occur simultaneously. This implies that the

contributions of the higher elastic modes are strongly pronounced in the three-dimensional configuration.
Fig. 13. Distribution of the bending moments per unit distance along x over the plate 1m� 1m� 2 cm, centre-impact, t ¼ 0:27ms.
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Fig. 14. Evolution of the deflection over the plate 1m� 2m� 2 cm, asymmetric impact.
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8. Axisymmetric problem of jet impact

In the axisymmetric problem of jet impact the jet radius ~Rj is taken as the length scale. The sketch of the problem in

nondimensional variables is presented in Fig. 16. Eqs. (1)–(3) have the form

q2j
qt2
¼

q2j
qr2
þ
1

r

qj
qr
þ

q2j
qz2

ðro1; zo0Þ,

j ¼ 0 ðr ¼ 1; zo0Þ,

jz ¼ 1� wtðr; tÞ ðrp1; z ¼ 0Þ.

Eqs. (9) for the eigenfunctions become

q2Ak

qr2
þ
1

r

qAk

qr
þ l2kAk ¼ 0 ðro1Þ,

Ak ¼ 0 ðr ¼ 1Þ,
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Fig. 15. Time history of the plate deflection w (a), the bending moments Mxx (b) and Mxy (c) at the plate centre (solid line) and at the

jet centre (dashed line). Plate 1m� 2m� 2 cm, asymmetric impact with the jet centre at ð0:3; 0:4mÞ.

Fig. 16. Sketch of the axisymmetric impact problem.
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which gives

AkðrÞ ¼ akJ0ðlkrÞ.
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Fig. 17. Time history of the plate deflection at the centre of circular plate.

Fig. 18. Evolution of the plate deflection along the radius (time t is in microseconds).
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The coefficients ak, kX1, are calculated by using Eq. (10)

ak ¼ p�1=2J�11 ðlkÞ,
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where lk are zeros of the Bessel function J0ðrÞ. From Eq. (14), ck are obtained as

ck ¼ 2p
Z 1

0

AkðrÞrdr ¼
2
ffiffiffi
p
p

lk

.

The normal modes of the circular plate satisfy the equation

q2

qr2
þ

1

r

q
qr

� �2

cm ¼ k4mcm ðroRpÞ.

We consider the case of a clamped plate for which the boundary conditions are

cm ¼ 0;
dcm

dr
¼ 0 ðr ¼ RpÞ.

We obtain

cmðrÞ ¼ Dm½J0ðkmr=RpÞ � BmI0ðkmr=RpÞ�,

where

Bm ¼
J0ðkmÞ

I0ðkmÞ
; Dm ¼ p�1=2R�1p ½2J

2
0ðkmÞ þ J21ðkmÞ � B2

mI
2
1ðkmÞ�

�1,

I0ðxÞ and I1ðxÞ are the modified Bessel functions of zero and first order, respectively. The eigenvalues km are the positive

roots of the equation

J1ðkmÞI0ðkmÞ þ J0ðkmÞI1ðkmÞ ¼ 0.

The integrals Tkm in Eq. (25) are calculated as

Tkm ¼ 2p
Z 1

0

AkðrÞcmðrÞrdr ¼ �2pakDmR2
plkJ1ðlkÞ

J0ðkm=RpÞ

k2m � R2
pl

2
k

þ Bm

I0ðkm=RpÞ

k2m þ R2
pl

2
k

" #
.

Figs. 17 and 18 present results for a steel circular plate with radius ~Rp ¼ 2m and thickness ~h ¼ 1:5 cm, which is

subject to impact by a jet of radius ~Rj ¼ 0:5m. The impact velocity is 25m=s. In the calculations Np ¼ Nj ¼ 10 and the

dimensionless time step Dt ¼ 0:02 which corresponds to 6:7� 10�6 s.

Fig. 17 depicts the deflection at the centre of the plate as a function of time. The dots in Fig. 17 are time instants for

which the distributions of the plate deflection along the radius are given in Fig. 18. The unit of the time in Fig. 18 is

microsecond.
9. Conclusion

The coupled problem of compressible jet impact onto elastic plates has been investigated. The initial stage of the

liquid–plate interaction was the main concern in this paper. This is the stage during which hydrodynamic loads,

deflection and stresses may take their maximal values. The duration of the initial stage is of the order of milliseconds,

which makes it possible to neglect temporal variation of the impact region and to linearize the equations of motion and

the boundary conditions. On the other hand, the interaction between the compressible jet and elastic plate is strong. The

problem was treated as a linear hydroelastic problem. By using the normal mode method and the Laplace transform,

the problem was reduced to a system of ordinary differential and integral equations in time with respect to the principal

coordinates of the velocity potential and the plate deflection. ‘‘Memory’’ effects were taken into account. The system

has been truncated and solved numerically by the fourth-order Runge–Kutta method and the integral terms were

computed by the trapezoidal rule. Three important cases have been considered, which include a two-dimensional

problem of jet impact onto a simply supported beam, an axisymmetric problem of circular jet impact onto a clamped

circular plate and a three-dimensional problem of rectangular jet impact onto a simply supported rectangular plate.

Both the plate deflection and the stress distribution over the plate were computed and analysed in each problem.

It was shown that convergent results can be obtained with 10 modes in two-dimensional and axisymmetric problems.

In the three-dimensional problem more modes must be used in the numerical calculations. The more elastic modes in

the calculations, the smaller the time step Dt should be in the numerical integration of the system of Eqs. (29)–(32).

Correspondingly, to achieve better accuracy, more computational time should be spent for evaluation of the integral

terms in Eq. (31).
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The results obtained show that the plate responds to the jet impact by vibration. The vibration does not show a

strong periodic character, but the effect of the first modes is evident. The periods of vibration of these modes are longer

than those of free vibrations, which is due to the ‘‘added mass’’ effect. The location of the impact region seems to have

little effect on the period of the plate vibration.
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